78 research outputs found

    Evolution of Conversations in the Age of Email Overload

    Full text link
    Email is a ubiquitous communications tool in the workplace and plays an important role in social interactions. Previous studies of email were largely based on surveys and limited to relatively small populations of email users within organizations. In this paper, we report results of a large-scale study of more than 2 million users exchanging 16 billion emails over several months. We quantitatively characterize the replying behavior in conversations within pairs of users. In particular, we study the time it takes the user to reply to a received message and the length of the reply sent. We consider a variety of factors that affect the reply time and length, such as the stage of the conversation, user demographics, and use of portable devices. In addition, we study how increasing load affects emailing behavior. We find that as users receive more email messages in a day, they reply to a smaller fraction of them, using shorter replies. However, their responsiveness remains intact, and they may even reply to emails faster. Finally, we predict the time to reply, length of reply, and whether the reply ends a conversation. We demonstrate considerable improvement over the baseline in all three prediction tasks, showing the significant role that the factors that we uncover play, in determining replying behavior. We rank these factors based on their predictive power. Our findings have important implications for understanding human behavior and designing better email management applications for tasks like ranking unread emails.Comment: 11 page, 24th International World Wide Web Conferenc

    Spatial and Temporal Hadron Correlators below and above the Chiral Phase Transition

    Get PDF
    Hadronic correlation functions at finite temperature in QCD, with four flavours of dynamical quarks, have been analyzed both above and below the chiral symmetry restoration temperature. We have used both point and extended sources for spatial as well as temporal correlators. The effect of periodic temporal boundary conditions for the valence quarks on the spatial meson correlators has also been investigated. All our results are consistent with the existence of individual quarks at high temperatures. A measurement of the residual interaction between the quarks is presented.Comment: 19 pages HLRZ 54/93, BI-TP 93/76, TIFR/TH/94-1

    Mixed phases of color superconducting quark matter

    Get PDF
    We examine electrically and color neutral quark matter in beta-equilibrium focusing on the possibility of mixed phases between different color superconducting phases. To that end we apply the Gibbs criterion to ensure phase equilibrium and discuss the external conditions under which these mixed phases can occur. Neglecting surface and Coulomb effects we find a rich structure of different mixed phases with up to four components, including 2SC and CFL matter as well as more ``exotic'' components, like a phase with us- and ds-pairing but without ud-pairing. Preliminary estimates indicate, however, that the mixed phases become unstable if surface and Coulomb effects are included.Comment: 22 pages, 9 figures, v2: minor changes in the text, version to appear in Nucl. Phys.

    Spectral Function of Quarks in Quark Matter

    Full text link
    We investigate the spectral function of light quarks in infinite quark matter using a simple, albeit self-consistent model. The interactions between the quarks are described by the SU(2) Nambu--Jona-Lasinio model. Currently mean field effects are neglected and all calculations are performed in the chirally restored phase at zero temperature. Relations between correlation functions and collision rates are used to calculate the spectral function in an iterative process.Comment: final version, published in PRC; 15 pages, RevTeX

    Spontaneous parity and charge-conjugation violations at real isospin and imaginary baryon chemical potentials

    Full text link
    The phase structure of two-flavor QCD is investigated at real isospin and imaginary quark chemical potentials by using the Polyakov-loop extended Nambu--Jona-Lasinio model. In the region, parity symmetry is spontaneously broken by the pion superfluidity phase transition, whereas charge-conjugation symmetry is spontaneously violated by the Roberge-Weiss transition. The chiral (deconfinement) crossover at zero isospin and quark chemical potentials is a remnant of the parity (charge-conjugation) violation. The interplay between the parity and charge-conjugation violations are analyzed, and it is investigated how the interplay is related to the correlation between the chiral and deconfinement crossovers at zero isospin and quark chemical potentials.Comment: 12 pages, 18 figures. Typos were revised. Symbols /P and /C were added in Figures 8a and 8b. Colors of the figures were changed. Some sentences were added and revise

    Meson loop effects in the NJL model at zero and non-zero temperature

    Full text link
    We compare two different possibilities to include meson-loop corrections in the Nambu-Jona-Lasinio model: a strict 1/N_c-expansion in next-to-leading order and a non-perturbative scheme corresponding to a one-meson-loop approximation to the effective action. Both schemes are consistent with chiral symmetry, in particular with the Goldstone theorem and the Gell-Mann-Oakes-Renner relation. The numerical part at zero temperature focuses on the pion and the rho-meson sector. For the latter the meson-loop-corrections are crucial in order to include the dominant rho -> pipi-decay channel, while the standard Hartree + RPA approximation only contains unphysical qqbar-decay channels. We find that m_\pi, f_\pi, and quantities related to the rho-meson self-energy can be described reasonably with one parameter set in the 1/N_c-expansion scheme, whereas we did not succeed to obtain such a fit in the non-perturbative scheme. We also investigate the temperature dependence of the quark condensate. Here we find consistency with chiral perturbation theory to lowest order. Similarities and differences of both schemes are discussed.Comment: 51 pages, 18 figures, to be published in Physics of Atomic Nuclei, the volume dedicated to the 90th birthday of A.B. Migdal, error in Eq. 4.22 correcte

    Heavy--light mesons in a bilocal effective theory

    Full text link
    Heavy--light mesons are described in an effective quark theory with a two--body vector--type interaction. The bilocal interaction is taken to be instantaneous in the rest frame of the bound state, but formulated covariantly through the use of a boost vector. The chiral symmetry of the light flavor is broken spontaneously at mean field level. The framework for our discussion of bound states is the effective bilocal meson action obtained by bosonization of the quark theory. Mesons are described by 3--dimensional wave functions satisfying Salpeter equations, which exhibit both Goldstone solutions in the chiral limit and heavy--quark symmetry for mQm_Q\rightarrow\infty. We present numerical solutions for pseudoscalar DD-- and BB--mesons. Heavy--light meson spectra and decay constants are seen to be sensitive to the description of chiral symmetry breaking (dynamically generated vs.\ constant quark mass).Comment: (34 p., standard LaTeX, 7 PostScript figures appended) UNITUE-THEP-17/9

    Diquark Bose Condensates in High Density Matter and Instantons

    Get PDF
    Instantons lead to strong correlations between up and down quarks with spin zero and anti-symmetric color wave functions. In cold and dense matter, nb>nc1fm3n_b>n_c\simeq 1 fm^{-3} and T<TcT<T_c\sim 50 MeV, these pairs Bose-condense, replacing the usual condensateandrestoringchiralsymmetry.Athighdensity,thegroundstateisacolorsuperconductorinwhichdiquarksplaytheroleofCooperpairs.AninterestingtoymodelisprovidedbyQCDwithtwocolors:ithasaparticleantiparticlesymmetrywhichrelates condensate and restoring chiral symmetry. At high density, the ground state is a color superconductor in which diquarks play the role of Cooper pairs. An interesting toy model is provided by QCD with two colors: it has a particle-anti-particle symmetry which relates and condensates.Comment: 4 pages ReVTeX, 2 eps-figures included using epsf.st

    On impact parameter dependence of low-x structure functions

    Full text link
    We consider impact parameter dependence of the polarized and unpolarized structure functions. Unitarity does not allow factorization of the structure functions over the Bjorken x and the impact parameter b variables. On the basis of the particular geometrical model approach we conclude that spin of constituent quark may have a significant orbital angular momentum component which can manifest itself through the peripherality of the spin dependent structure functions.Comment: 5 pages, 1 figur

    Effective Chiral Meson Lagrangian For The Extended Nambu-Jona-Lasinio Model

    Get PDF
    We present a derivation of the low-energy effective meson Lagrangian of the extended Nambu -- Jona-Lasinio (ENJL) model. The case with linear realization of broken SU(2)×SU(2)SU(2)\times SU(2) chiral symmetry is considered. There are two crucial points why this revision is needed. Firstly it is the explicit chiral symmetry breaking effect. On the basis of symmetry arguments we show that relevant contributions related with the current quark mass terms are absent from the effective Lagrangians derived so far in the literature. Secondly we suggest a chiral covariant way to avoid non-diagonal terms responsible for the pseudoscalar -- axial-vector mixing from the effective meson Lagrangian. In the framework of the linear approach this diagonalization has not been done correctly. We discuss as well the SU(2)×SU(2)/SU(2)SU(2)\times SU(2)/SU(2) coset space parametrization for the revised Lagrangian (nonlinear ansatz). Our Lagrangian differs in an essential way from those that have been derived till now on the basis of both linear and nonlinear realizations of chiral symmetry.Comment: 23 pages, plain LaTex, no figure
    corecore